Test No. 2

- (1a) Use the first–scattered distributed source technique together with diffusion theory to solve for the scalar flux in a slab of width x_0 , with an isotropic boundary flux, $\frac{\phi_0}{2\pi}$ $p/(cm^2 sec steradian)$, incident at the left face (x = 0) and a vacuum boundary condition at the right face $(x = x_0)$. The slab is a pure scatterer, i.e., $\sigma_t = \sigma_s$, and the cross–section is constant in space. Note that to get the particular solution for this problem, you must use the fact that $\frac{d}{dx}E_n(x) = -E_{n-1}(x)$.
- (1b) Calculate the fraction of particles entering the slab that are reflected.
- (1c) Evaluate (1a) and (1b) in the limit as $x_0 \to \infty$
- (2a) Use diffusion theory to calculate the scalar flux in a semi-infinite slab with an isotropic boundary flux, $\frac{\phi_o}{2\pi} p/(cm^2 sec steradian)$, incident from the left. The cross sections are constant in space and there is both absorption and scattering: $\sigma_t = \sigma_a + \sigma_s$. The boundary condition at infinity is $\phi(\infty) < \infty$.
- (2b) Calculate the fraction of particles entering the slab that are reflected.
- (2c) Evaluate (2a) and (2b) in the limit as $\sigma_a \to 0$.
- (2d) Evaluate (2b) with $\sigma_s = 0$ in the limit as $\sigma_a \to \infty$.

(3a) Solve the following problem analytically:

$$\frac{d\psi}{dx} + \sigma_a \psi = 0$$
, for $x \in [0, x_0]$, with $\psi(0) = 1$.

(3b) Solve this equation using a Petrov-Galerkin approximation with the following trial space:

$$\tilde{\psi}(x) = 1.0$$
 at $x = 0$,
= $a + bx$, otherwise,

and the following weighting space:

$$W_1(x) = 1.0,$$

$$W_2(x) = \delta(x - 2x_0/3).$$

(3c) Determine the order accuracy of the numerical solution for $\psi(x_0)$, i.e., determine n where

$$\psi(x_0)^{\text{EXACT}} = \psi(x_0)^{\text{NUMERICAL}} + O(x_0^n).$$

* Remember that the derivative of a discontinuous function of x is given by the change in the function in the direction of increasing x at the discontinuity times a delta-function defined at the point of discontinuity:

Figure 1: A discontinuous function.

$$\frac{df}{dx}|_{x=x_d} = (f_2 - f_1)\delta(x - x_d)$$

* Also remember that the need for representing the derivative at the point of discontinuity can be avoided simply by integrating the derivative term by parts.